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Figure 1: Examples of different views in the LSAView application: (1a) and (2a) GRAPH VIEW, (1b) and (2b) MATRIX VIEW, (1c) and (2c) YOU
ARE HERE VIEW (3a) SMALL MULTIPLES VIEW, (3b) DIFFERENCE MATRIX VIEW (4) DOCUMENT VIEW. The CORPUS VIEW and TABLE VIEW are
not shown here.

ABSTRACT

Latent Semantic Analysis (LSA) is a commonly-used method for
automated processing, modeling, and analysis of unstructured text
data. One of the biggest challenges in using LSA is determining the
appropriate model parameters to use for different data domains and
types of analyses. Although automated methods have been devel-
oped to make rank and scaling parameter choices, these approaches
often make choices with respect to noise in the data, without an
understanding of how those choices impact analysis and problem
solving. Further, no tools currently exist to explore the relationships
between an LSA model and analysis methods. Our work focuses
on how parameter choices impact analysis and problem solving. In
this paper, we present LSAView, a system for interactively explor-
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ing parameter choices for LSA models. We illustrate the use of
LSAView’s small multiple views, linked matrix-graph views, and
data views to analyze parameter selection and application in the
context of graph layout and clustering.

Index Terms: I.3.8 [Computing Methodologies]: Computer
Graphics—Applications; I.2.7 [Computing Methodologies]: Nat-
ural Language Processing—Text analysis

1 INTRODUCTION

Automated processing, modeling, and analysis of unstructured text
(news documents, web content, journal articles, etc.) is a key task
in many data analysis and decision making applications. In many
cases, documents are modeled as term or feature vectors and latent
semantic analysis (LSA) [6, 7, 16] is used to model latent, or hid-
den, relationships between documents and terms appearing in those
documents. LSA supplies conceptual organization and analysis of
document collections by modeling high-dimension feature vectors
in many fewer dimensions. In this paper, we concentrate on how
parameter choices used in LSA impact document relationship mod-
eling in the context of graph layout and clustering methods.

LSA computes a truncated singular value decomposition (SVD)



of a term-document matrix [3], i.e., the collection of feature vectors
associated with the documents in a text collection, or corpus. More
specifically, the rank-k LSA model of a term-document matrix, A ∈
Rm×n, is its rank-k SVD,

Ak = UkΣkVT
k , (1)

where Uk ∈ Rm×k, Σk ∈ Rk×k, Vk ∈ Rn×k contain the k leading
left singular vectors, singular values, and right singular vectors, re-
spectively. Furthermore, UT

k Uk = VT
k Vk = Ik, where Ik is the k× k

identity matrix. Often, the rank of the LSA model in (1) is chosen
such that k << min(m,n), leading to a reduction in model noise and
computation for many analysis methods.

One particular type of analysis that is widely performed using
LSA—and the motivating application for the work presented in this
paper—is determining conceptual relationships between two docu-
ments, two terms, or a term and a document. Graph data structures
and algorithms are often used in this case [15]. For example, doc-
ument clustering using graph layout methods and LSA modeling
can be performed by first computing distances, or similarity scores,
between all pairs of documents using the right singular vectors of
the rank-r SVD of a term-document matrix. In this work, we use
cosine similarities, defined as

ei j(k) =
〈vi

kΣk,v
j
kΣk〉

‖vi
kΣk‖2 ‖v j

kΣk‖2
, (2)

between documents i and j, where 〈·, ·〉 is the standard inner prod-
uct, vi

k is the ith row of Vk from (1), and ‖ · ‖2 is the L2-norm, or
standard Euclidean distance. The similarities are stored as a simi-
larity matrix, E, whose element (i, j) is defined in (2). To support
large corpus analysis, only edge weights above a threshold are used
in practice, leading to sparse similarity matrices. This similarity
matrix is then used as a weighted adjacency matrix to construct
a similarity graph. In this graph, nodes represent documents and
edges represent the relationships between documents, weighted by
similarity scores. Finally, graph layout methods are used to repre-
sent clusterings of the documents, i.e., related nodes are grouped
together and unrelated nodes are separated in the resulting graph
layout.

A central challenge when using LSA for text analysis is deter-
mining appropriate parameters for the SVD, particularly selecting
the rank of the SVD and scaling of the singular values for differ-
ent data and types of analysis. The rank selection problem refers to
the determination of an appropriate rank of the truncated SVD for
use with a particular task and data set. For the problem of document
clustering, a suitable rank is typically determined by analyzing doc-
ument sets related to the collection to be clustered. Clusterings for
these related collections are used to tune the LSA rank parame-
ter for the collection to be clustered [17]. This approach requires
annotated document collections whose term-document relationship
distributions are highly correlated with those of the document col-
lection to be clustered. Such annotations are laborious to generate
and the results may contain errors or subjective clusterings. Thus, a
new technique for solving the rank selection problem is needed for
the problem of document clustering.

Our approach for solving the rank selection problem in document
clustering uses visual comparisons of the impacts on document
groupings in the model resulting from parameter changes to LSA.
In particular, we look for the formation of document groups with
more heavily weighted edges within clusters and lightly weighted,
or non-existent, edges between clusters.

Singular value scaling (or rescaling) refers to an exponential
scaling of Σk by α/2 ∈ R. The result of singular value scaling can
be characterized as a contraction (0 < α < 2), expansion (α > 2),
inversion (α < 0) or flattening (α = 0) of the singular value spec-
trum. In the original LSA work in information retrieval, the value of

α = 2 (i.e., no scaling) was used [7], whereas subsequent research
demonstrates the usefulness of contractions and inversions of the
singular value spectrum [3]. The choice of scaling often varies de-
pending on application: for example, inverting the singular values
tends to highlight novel and anomalous relationships when cluster-
ing documents.

For the document clustering problem, the use of singular value
scaling changes the similarity scores in (2) to
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Although originally developed to improve information retrieval sys-
tems [1, 27], singular value scaling can be used for any analysis task
employing LSA models. However, as with the rank selection prob-
lem, no tools exist for visually exploring the relationships between
the scaling parameter and analysis methods.

In this paper we present LSAView, a system for interactive ex-
ploration of the impact of parameter choices in graph-based infor-
matics analysis systems on the visual presentation and analysis ca-
pabilities that data analysts utilize in decision making processes.
Specifically, we present the visualization capabilities of LSAView
and illustrate how they can be used to understand the relationships
between parameters used in LSA and in the application area of
graph-based document cluster analysis. LSAView fills a gap for al-
gorithm developers who require better understanding of the impact
and sensitivities of parameters in their methods and for data ana-
lysts who need to better understand the models used in their anal-
yses. Through visual exploration both developers and analysts can
investigate the complex relationships between algorithms, models
and analysis.

The major contributions of this work are as follows:

• A framework for visually exploring the relationship between
LSA model parameters and graph clustering methods.

• A new MATRIX VIEW to support scalable, zoomable visual-
ization of matrix and matrix difference data.

• Visualization of graph statistics to identify unexpected edges
associated with LSA model parameters.

• Case studies illustrating the use of visual algorithm analysis to
identify the impact of LSA model parameters on graph layout
and clustering methods.

The remainder of this paper is organized as follows. In Sec-
tion 2, we discuss related work in the areas of LSA and visualiza-
tion. LSAView is described in Section 3. Section 4 illustrates the
use of LSAView in two case studies, and conclusions are presented
in Section 5.

2 RELATED WORK

2.1 LSA: Rank Selection and Singular Value Scaling
The method of LSA presented in the previous section has led to
many variants that show promise across a broad range of applica-
tions: e.g., probabilistic LSA [12], LSA using the semi-discrete
[14] and non-negative [2] matrix decompositions, and LSA-like
tensor decompositions [13]. Common to all of these methods are
the choices of the dimension of the latent feature space (i.e., rank
of the matrix or tensor decomposition) and scaling of the latent
features (i.e., singular value scaling in the case of the SVD-based
LSA method). Therefore, progress made in solving the rank selec-
tion and singular value scaling problems described in the previous
section will likely lead to analogous improvements in these related
methods. In this paper, though, we restrict our attention to the SVD-
based LSA method.

A recent survey indicates the challenges associated with rank se-
lection for the problem of LSA and provides many examples of ”op-
timal” rank settings for a wide variety of problems [4]. Statistical



and probabilistic methods for selecting the rank of an SVD in data
analysis applications include cross validation [20, 25], Bayesian
model selection via Markov chain Monte Carlo methods [11], ex-
pectation maximization [22], and Bayesian inference [18]. How-
ever, these methods focus on rank determination with respect to
noise in the the data and not with respect to how the SVD will
be used for analysis. As an example of the potential shortcom-
ings of these methods, we compare LSAView and a cross validation
method in the case studies in Section 4. Attempts to determine a
useful SVD rank for specific problems exist [15], but tools for gen-
eral exploration of relationships between the rank of the SVD and
its impact on text analysis methods do not.

Similarly, methods for scaling the singular values have been de-
veloped for information retrieval applications [1, 27], but no tools
for exploring the relationships between spectral properties and anal-
ysis methods currently exist.

2.2 Visualization

Eick, et al. developed a multi-view system for evaluating super-
vised learning algorithms used in solving computational linguistics
problems [8]. After training the system, they measured classifica-
tion accuracy against a set of predefined categories and concepts.
Outside text analysis, Groth described a multi-view system to ex-
amine the performance of a naive Bayes classifier with respect to
various discretization schemes [10]. While these systems provide
visualization and analysis of the performance of individual models,
neither provides comparative analyses of multiple models.

3 LSAVIEW

LSAView is built using Sandia National Laboratories’ open-source
Titan Informatics Toolkit [5, 26]. It uses a multiple-coordinated-
view approach to explore the impact of parameter choices, as shown
in Figure 1. The application’s input data consists of a corpus with
the text for each document, and one or more document similarity
graphs, each produced using different values of the LSA parameters
(e.g., the LSA model rank and/or singular value scaling parameters
highlighted in this paper).

The LSAView views were designed to present different visu-
alizations of individual analysis models, along with comparative
visualizations of collections of models. The GRAPH VIEWS dis-
play similarity graphs using typical layout methods, while the MA-
TRIX VIEWS use color-coding to permit visual comparisons of edge
weights, statistics calculated over a range of result graphs (see Sec-
tion 3.2.2), and explicit differences in values or statistics between
matrices associated with two graphs. Non-graphical table views
enable drill-down to explicit numerical values for the edge weights
and statistics for each edge. Text-based views include the COR-
PUS VIEW and DOCUMENT VIEW to enable examination of source
texts for selected documents.

The graphical views are grouped into three panels. In Figure 1,
these panels are enabled along with the DOCUMENT VIEW on the
far right. The left and right graphical panels provide detailed in-
spection of two document similarity graphs resulting from differ-
ent LSA models. The upper GRAPH VIEWS and lower MATRIX
VIEWS each represent the same data in a different form. In be-
tween, two YOU ARE HERE VIEWS provide context and an alter-
native navigation method within the corresponding window.

The middle panel contains a SMALL MULTIPLES VIEW at the
top and a DIFFERENCE MATRIX VIEW at the bottom. The DIF-
FERENCE MATRIX VIEW shows color-coded differences between
the left and right panels’ edge weights or other statistics derived
from the adjacency matrices associated with different LSA models.
The SMALL MULTIPLES VIEW provides a high level view of graph
layouts and differences between adjacency matrices for up to five
different LSA models, which need not match the models that are

shown in the side panels. To assist in managing this large collec-
tion of views, a series of display toggle buttons for both individual
views and for entire panels is provided in the toolbar at the top of the
application. Additionally, double-clicking within a view will ex-
pand it to fill the entire application window, simultaneously turning
off all other views. Double-clicking again will restore the previous
view configuration. For GRAPH VIEWS or MATRIX VIEWS with
an associated YOU ARE HERE VIEW, double-clicking includes the
YOU ARE HERE VIEW in the expanded view.

3.1 Graph Views
Each GRAPH VIEW displays a similarity matrix E as a node-link
diagram, where nodes represent documents and edges represent the
weighted similarities between documents, as defined in (2). The
graph provides a high-level view of how document clusters change
relative to parameter changes. In the SMALL MULTIPLES VIEW in
Figure 1, the five GRAPH VIEWS show the impact of changing rank
on the connectivity of a document group, as demonstrated by the
highlighted small cluster of documents that is not connected to the
corpus using a lower-rank LSA model (top left) but is connected
when using a higher-rank LSA model (bottom right). Since the
choice of graph layout algorithm can impact the perceived group-
ings, LSAView users may select from among the many layout al-
gorithms provided by Titan. All of the figures in this paper use
vtkFast2DLayoutStrategy, a density-grid-based layout al-
gorithm that executes in linear time in the sum of nodes and edges
of the graph.

Edges are color-coded using saturation to denote similarity val-
ues, with low values in gray and high values in red. Nodes, edges,
or both edges and nodes contained in a rectangular region can be
selected. Selections are highlighted in green and are linked to all
other views. Note that not all views share the same edges, so each
view is limited to highlighting the selected edges that are shared
across views.

3.2 Matrix Views
3.2.1 Visualization
Each MATRIX VIEW provides a scalable visualization of a similar-
ity matrix E or a matrix of statistics on the similarity values. Con-
ceptually, each value in the matrix (e.g., the similarity value of each
edge in the corresponding similarity graph) is rendered as a small
rectangle. Since the size of the matrix (the number of documents
in a corpus) will exceed the screen resolution for all but the most
trivial of corpora, some mechanism is necessary to provide navi-
gation through subsets of the matrix. Naive in-and-out zooming of
the matrix was deemed insufficient, since “zooming out” to display
the entire matrix leads to sub-pixel rendering of the individual val-
ues, leaving little useful context for navigation. To provide a usable
visualization with useful summarization when “zoomed out”, the
MATRIX VIEW provides treemap-like “levels of detail”, binning
individual matrix values into larger rectangular “bins”. The bin-
ning process is applied recursively, creating larger-and-larger bins
until we are left with a single all-encompassing bin at the root of
a tree. With the individual matrix values thus organized, we can
render bins at any level in the tree based on the current zoom level,
with each bin efficiently summarizing its contents.

For example, the bins in a MATRIX VIEW associated with a sin-
gle document similarity graph can be used to visualize edge weights
or one-sample t statistics on the edge weights. When viewing edge
weights, different options are available for summarizing the val-
ues within a bin, including minimum, maximum, and average child
weight. For the t statistics, the maximum value of each bin’s chil-
dren is used as its summary value.

For DIFFERENCE MATRIX VIEWS, a matrix of values derived
from a pair of similarity graphs is first computed, including two-
sample t statistics, as well as differences (edge weights and sample



means) and summations (standard errors) of the elements of the two
adjacency matrices associated with the two graphs. The resulting
matrix of differences is then rendered as in a MATRIX VIEW. In all
DIFFERENCE MATRIX VIEWS, the maximum value within a bin is
propagated upward.

Bins and values are color-coded to permit visual comparisons
between graphs. All of the values to be color-coded, except for the
t statistics, range from negative one to positive one. Saturation is
used to show increasing absolute value, with zero encoded as white.
Large positive values are shown in bright red, large negative values
in deep blue, and the lookup table is constructed using linear inter-
polation. Selected bins and values are outlined in green to stand out
against the blue-red palette, and selections are linked to all other
views.

For the t statistics (see Section 3.2.2), we are interested only in
the magnitudes of the values, so we use saturation ranging from
white to bright green to encode increasing absolute value. The
lookup table is constructed using a log scale to focus color and at-
tention on the highest values in the matrix. Selected bins and values
are outlined in red to stand out against the green palette, and selec-
tions are linked to all other views.

The initial rendering of the MATRIX VIEW displays the entire
tree at the lowest level that preserves a minimum rectangle size.
This facilitates the use of a MATRIX VIEW at all scales, including
within the SMALL MULTIPLES VIEW (Section 3.4). The user in-
terface is zoomable so all levels of the tree are accessible. As the
user zooms into a deeper level, the rendering of the new level over-
laps the old level to provide context. Once the size of the rectangles
at the lower level exceeds a threshold, the higher level rectangles
are no longer rendered. The DIFFERENCE MATRIX VIEW in Fig-
ure 1 demonstrates overlapped rendering of two tree levels, while
the MATRIX VIEW to its right demonstrates the appearance of a
view after zooming all the way in to the leaf level of the tree (note
that at the leaf level, the sparsity pattern of the matrix becomes ap-
parent, since actual values are rendered, instead of bins).

Numeric values for each edge and summary values for each bin
are displayed in a “hover balloon” as the mouse moves over a rect-
angular region. The region associated with the value is highlighted
in white to visually confirm the position being referenced. The ap-
plication will always select the lowest node (smallest encompassing
rectangle) on the tree associated with the mouse position.

3.2.2 Matrix Data
We define the sample mean of ei j(k,α) using n+1 samples as

ēi j(k,α,n) =
1

n+1

k+n/2

∑
r=k−n/2

ei j(r,α) , (4)

and the corresponding standard error as

si j(k,α,n) =

√√√√1
n

k+n/2

∑
r=k−n/2

(
ei j(r,α)− ēi j(k,α,n)

)2
, (5)

where α is the singular value scaling parameter. Note that the statis-
tics use biased samples centered around edge weights associated
with a rank-k LSA model. The purpose of these statistics are to help
identify anomalous edge weights given variances in those weights
across the most closely related LSA models.

Using the sample mean and standard error definitions above, we
define a one-sample t statistic with sample size of n + 1 for the
weight on the edge between nodes i and j corresponding to the
rank-k SVD and singular value scaling value of α as

t(1)
i j =

ēi j(k,α,n)− ei j(k,α)
si j(k,α,n)/

√
n+1

. (6)

This one-sample t statistic can be used to identify anomalous, or
outlier, edge weights in a single graph. The hypothesis being tested
is that there is no difference between an edge weight and its mean
value (sampled from weights derived from different LSA models);
thus, higher values of the t statistic correspond to more anomalous
edge weights.

Similarly, a two-sample t statistic for the corresponding edge
weights using SVDs with ranks k1 and k2 and sample sizes n1 and
n2 respectively is defined as

t(2)
i j =

ēi j(k1,α,n1)− ēi j(k2,α,n2)√
[si j(k1,α,n1)]

2

n1
+ [si j(k2,α,n2)]

2

n2

. (7)

This two-sample t statistic is used to identify anomalous edge
weights when comparing two graphs. The hypothesis being tested
here is that the mean weights of corresponding edges in the two
graphs are not different.

As the similarities defined in (2) form the entries of a similarity
matrix, E, the t statistics defined in (6) and (7) form the entries of
the matrices, T (1) and T (2), respectively. These statistics are viewed
for entire graphs using MATRIX VIEWS and DIFFERENCE MATRIX
VIEWS, respectively, as defined above.

In the case of sparse similarity matrices, edge weights of 0 are
treated as missing values for the statistics defined above, and the
sample sizes are adjusted to reflect this.

3.3 You Are Here Views
The YOU ARE HERE VIEWS provide context for both GRAPH
VIEWS and MATRIX VIEWS so that the user can keep track of their
location within the high-level view as they zoom in to focus on
a small region. The red rectangle in the YOU ARE HERE VIEW
shows the current view boundaries and position within the larger
GRAPH VIEW or MATRIX VIEW. The YOU ARE HERE VIEW is
implemented simply as a rectangle drawn over a captured image.
Updates to the image are only made when the underlying matrix
data being rendered changes; thus, selections are not visible in the
YOU ARE HERE VIEW.

Panning or zooming in a graph or matrix view will update the
rectangle location and size. Similarly, dragging or scaling the red
rectangle will pan or zoom the contents of the graph or matrix view.
Often navigating using the YOU ARE HERE VIEW is preferred due
to the contextual landmarks this view provides.

3.4 Small Multiples Views
Inspired by Tufte [23], the SMALL MULTIPLES VIEW is a combi-
nation of GRAPH VIEWS and MATRIX VIEWS that enables com-
parisons of up to five different document similarity graphs. The
graph views provide a high-level overview of the different clus-
terings resulting from the parameter changes in the LSA models.
Further, each graph view serves as a “label”, defining the matrix
pairs visualized by the MATRIX VIEWS – specifically, each MA-
TRIX VIEW represents the difference between the graph at the head
of its row and the graph at the tail of its column.

Each of the GRAPH VIEWS and MATRIX VIEWS is fully inter-
active and operates just as any graph or matrix view elsewhere in
the application would. Selections made in any one of the views
are fully linked to all other views in the application. Zooming and
panning permit exploratory navigation within each view. The only
limitation is the lack of YOU ARE HERE VIEWS for each graph
or matrix, so it is difficult to maintain context. Another difference
is that double-click expands the entire SMALL MULTIPLES VIEW,
rather than any one view within it.

4 CASE STUDIES

Two case studies are presented in this section, focusing on the
problems of rank selection and singular value scaling, respectively.



These studies illustrate how LSAView can be used to interactively
determine suitable LSA model parameters for the problem of graph
clustering.

4.1 Data
Two sets of data are used in the case studies. The first set, de-
noted DUC, consists of newswire documents used in the 2003 Doc-
ument Understanding Conference (DUC) for evaluating summa-
rization systems on clusters of documents [19]. The DUC data is
comprised of 298 documents in 30 clusters, with each cluster con-
taining about 10 documents focused on a particular topic or event.

The second set of documents, denoted TECHTC, is from the
TechTC-100 Test Collection1 [9]. Each of the 100 subsets of doc-
uments in this collection consists of about 150 HTML documents
partitioned into two clusters. The case study results presented here
use the Exp 186330 195558 subset of the TECHTC data, which
has the lowest difficulty rating in terms of data clustering.

Note that in the case studies we assume that each data set con-
tains two or more clusters, but we do not use the cluster assignments
in selecting a suitable rank to expose the cluster structure or deter-
mining a useful scaling of the singular values.

4.2 Rank Selection
Following Shneiderman’s Visual Information-Seeking Mantra [21],
the process of using LSAView to visually determine the rank of the
LSA model most suitable for graph clustering is as follows:

1. Identify a range of potential ranks using the SMALL MULTI-
PLES VIEW.

2. Choose a rank by comparing graph clusterings using the
GRAPH VIEWS, MATRIX VIEWS, and DATA TABLE VIEWS.

3. Validate the chosen rank using the DOCUMENT VIEW.

Note that several iterations may be required for each step.
During step 1 of the rank selection process, coarse steps in

rank values can be used to identify changes in the graph cluster-
ing of documents over a wide range of LSA model ranks. Fig-
ure 2 illustrates this for the DUC data using LSA model ranks of
k = 20,50,80,110,140, where the latter is the rank determined to
be optimal using a cross validation method [25]. As shown in the
figure, though, that “optimal” rank does not reveal any information
about the cluster structure in the data, and thus is not useful for
the problem of document clustering. The DIFFERENCE MATRIX
VIEWS in the figure are colored by differences in edge weights
(i.e., document similarities). By visualizing the impact of the rank
on both the graph clustering and the changes in the edge weights
simultaneously over several LSA models with different ranks, the
range of suitable ranks can be narrowed. Specifically, in Figure 2,
the LSA model ranks of k = 20 and, to a lesser extent, k = 50 ap-
pear to expose definite cluster structure and have edge weights that
are somewhat differentiated from those associated with the other
ranks (as depicted by the bold blue and red edge rectangles). Thus,
subsequent investigation is focused on ranks closer to those values.

After several iterations of step 1, we arrive at Figure 3, depict-
ing LSA models with ranks of k = 28,29,30,31,32. In this figure,
the DIFFERENCE MATRIX VIEWS are now colored by the sample
means of the edge weights. As the ranks are very close, these DIF-
FERENCE MATRIX VIEWS help identify changes in edge weights,
as the means of those weights should also be close. Note that the
two-sample t statistics could be used in a similar fashion.

The result of Step 2 in the rank selection process is depicted
in Figure 4, where GRAPH VIEWS and a DIFFERENCE MATRIX
VIEW colored by two-sample t statistics are shown for ranks of
k = 30 (left) and k = 32 (right). The t statistics can be used to
quickly identify differences between the two graphs, where a user

1http://techtc.cs.technion.ac.il/techtc100/techtc100.html

is easily drawn to the areas with the most significant differences
between edges weights (i.e., bold green edge and node rectangles
in the DIFFERENCE MATRIX VIEW).

After zoomed inspection of graph clusterings associated with
several of the most significant differences found using the views
depicted in Figure 4, we arrive at Figure 5, illustrating anomalous
links (determined from the t statistics) between document 297 and
groups of highly related documents (i.e., linked by bold red edges).
Now the similarities of document 297 with other documents dif-
fer dramatically for the two LSA models of rank k = 30 (left) and
k = 32 (right). Thus, further inspection of that document is required
to help identify the most suitable rank.

This brings us to step 3 of the rank selection process, where
manual inspection of the underlying documents is used to validate
the selected rank. Figure 6 presents the document view beside the
zoomed view of the LSA model of rank k = 30. After reading the
document and those identified as most similar (i.e., those linked to
document 297 in the graphs) for the different LSA model ranks (in-
cluding rank k = 32 and other nearby ranks), we conclude that the
rank of k = 30 is most suitable. Note here that it is coincidental that

Figure 2: SMALL MULTIPLES VIEW of DUC data with LSA model
ranks of k = 20,50,80,110,140. The DIFFERENCE MATRIX VIEWS de-
pict differences in the edge weights across the different graphs.

Figure 3: SMALL MULTIPLES VIEW of DUC data with LSA model
ranks of k = 28, . . . ,32. The DIFFERENCE MATRIX VIEWS depict dif-
ferences in the sample means of edge weights between the graphs.



Figure 4: Graph model comparisons of DUC data with rank k = 30
(left) and k = 32 (right) using the DIFFERENCE MATRIX VIEW (center)
of the two-sample t statistics.

Figure 5: Graph model comparisons of DUC data with rank k = 30
(left) and k = 32 (right) with weak similarities (gray edges) between
node 297 and groups of highly related documents (red edges).

Figure 6: Manual inspection of documents associated with anoma-
lous edge weights is performed using the linked GRAPH VIEWS and
DOCUMENT VIEWS. Interacting with both views is necessary for de-
termining where LSA models are linking nodes as expected.

%
Method Rank Variance
Leave-one-out cross validation [25] 140 80.72
20-group (fold) cross validation [25] 229 97.27
95% variance [24] 214 95.12
LSAView 30 40.59

Table 1: Rank selection comparison for the DUC data using different
methods. Only LSAView exposes the cluster structure in the data.

the most suitable rank is equal to the number of underlying clusters.
Document 297, regarding Chinese leadership statements and

policies regarding separatists, turns out to be an anomaly in that it

is only tangentially related to the documents in the cluster to which
it is assigned - where the main topic is the trial of 3 separatists
in China. It appears to be better related to another group of docu-
ments, documents 150–158, regarding the policies and responses of
the Russian government to Chechnyan separatists. Such subtle re-
lationships would be difficult to assess by simply reading all of the
documents in a corpus. By organizing and modeling the data using
LSA, combined with interactive exploration of different LSA mod-
els, we were able to extract subtle relationships while reading just a
few key documents. The strength of this visual algorithm analysis
can aid both the developer and analyst in their understanding of the
LSA modeling process.

Table 1 shows a comparison of rank selection using LSAView
versus cross validation and variance percentage threshold. As men-
tioned in Section 2.1, cross validation and other existing rank se-
lection methods tend to select ranks which are robust to noise while
accounting for variance in the data. However, as shown in Figure 2,
using the LSA model with rank determined by cross validation (i.e.,
k = 140), no cluster structure is apparent.

4.3 Singular Value Scaling

Using LSAView to visually determine a singular value scaling for
an LSA model that is most suitable for graph clustering follows the
same general steps as for the rank selection problem. Again, we
use the SMALL MULTIPLES VIEW to determine general trends of
the impact of the LSA model parameters—in this case, the singu-
lar value scaling parameter, α—followed by more detailed visual
analysis using the GRAPH VIEWS and MATRIX VIEWS, with fi-
nal validation using the DOCUMENT VIEW. The main difference
is that it may be useful to first inspect the scaled singular values
directly to determine if one scaling may be significantly different.
Figure 7 presents the scaled singular values of of the TECHTC data
for α = −2,−1,−0.5,0,0.5,1,2. Note that the original singular
values are those scaled by α = 2. We see that for all of the scaling
parameters, the scaled singular values trend toward zero for ranks
less than k ≈ 45. After that, the inverted scalings begin to amplify
noise from the data in the LSA model. This indicates that we should
concentrate on models with ranks less than k≈ 45 or focus on non-
inverting scaling parameters.

Figures 8 and 9 present the TECHTC data at ranks k = 100 and
k = 20, respectively, for various singular value scaling parameters
(α = −2,−1,0,1,2 from left to right along the diagonal). These
ranks were chosen as they fell on either side of the value of k ≈ 45
and thus seemed like a good place to begin comparisons of different
LSA models. Since the DIFFERENCE MATRIX VIEWS in these fig-
ures depict the differences in edge weights, it is clear in the case of
rank k = 100 that there is little difference in edge weights between
the LSA models using different singular value scaling parameters.
However, there are visually apparent differences in the graph clus-
terings derived from the different models.

Looking more closely at the differences between the LSA mod-
els for ranks k = 100 and k = 20, we find that there are signifi-
cant differences between the two sets of models. Figure 10 shows
zoomed graph views for models at the two ranks using α = 1 singu-
lar value scaling, i.e., the scaling leading to the best clusters deter-
mined visually using the small multiples views. From this figure,
we see that the graphs for the rank k = 100 model (left) consist
mostly of noise, i.e., the links appear random and have very low
edge weights. In contrast, the rank k = 20 model (right) appears to
reflect document relationships within (stronger red links) and be-
tween (weaker gray links) clusters. This indicates that models with
lower ranks may be more suitable for the graph clustering.

After more comparative analysis between LSA models of differ-
ent ranks and singular value scaling, we found that models of rank
k = 6 were most suitable using the criteria presented in the previous
section for rank selection. However, determining a suitable singu-



lar value scaling parameter proved more challenging. Again, as for
the rank selection problem, we turned to the DOCUMENT VIEW to
assist in validating the model. Figure 11 shows the zoomed GRAPH
VIEWS for rank k = 6 LSA models using α = 1 (left) and α =−1
(right) singular value scaling parameters. Observe that the model
on the left shows two clusters of documents within the larger com-
ponent (subsets of nodes located close together with high similar-
ity values, i.e., red links) with weak links between them (i.e., light
gray links denoting low similarity values). Although the model on
the right also shows two distinct clusters in this larger component,
there are more strong (red) links between them. As was the case
in selecting an appropriate rank, the use of the DOCUMENT VIEW
was then used to determine which of the two singular value scalings
was more appropriate. For the TECHTC corpus, both scalings ap-
peared appropriate, with the model corresponding to α = 1 separat-
ing the clusters slightly more than the model with α =−1. Indeed
both models perform well in separating the clusters, as shown in
Figure 12, where the true cluster assignments are encoded by node
color.

In the future, we plan to research how to organize and visualize
multiple models that lead to equivalent (or nearly equivalent) topo-
logical structures in the resulting graphs, as may be the scenario in
this latter case of singular value scaling determination.

Figure 7: Singular values for the TECHTC data scaled using different
values of α. The original singular values correspond to α = 2.

Figure 8: Small multiples view of TECHTC data with LSA model rank
of k = 100 and singular value scaling parameters α = 2,1,0,−1,−2
(from left to right along the diagonal). The MATRIX VIEWS depict
differences in the edge weights across the different graphs.

Figure 9: Small multiples view of TECHTC data with LSA model rank
of k = 20 and singular value scaling parameters α = 2,1,0,−1,−2
(from left to right along the diagonal). The MATRIX VIEWS depict
differences in the edge weights across the different graphs.

Figure 10: Graph views of TECHTC data for rank k = 100 (left) and
k = 20 (right) LSA models using α = 1 singular value scaling.

Figure 11: Graph views of TECHTC data for rank k = 6 LSA models
using α = 1 (left) and α =−1 (right) singular value scalings.

5 CONCLUSION

In this paper, we have presented the LSAView visual analysis sys-
tem for interactively assessing LSA models and their impact on



Figure 12: Graph views of TECHTC data for rank k = 6 LSA models
using α = 1 (left) and α =−1 (right) singular value scalings and nodes
colored by cluster (red for one cluster, blue for the other).

solving text analysis tasks. This is a key departure from previous
work in this area, which has tended to focus on algorithm perfor-
mance rather than what the overall impact would be to the results
of the analysis. We have focused on how parameter choices associ-
ated with LSA models impact modeling and analysis downstream
in complex text analysis pipelines. Through two case studies pre-
sented here, we have illustrated how LSAView can be used effec-
tively to understand LSA models, both in terms of how they are
used to seed other models (e.g., graph models) and how they can be
applied in solving the task of graph-based document clustering.

We have presented several new visualizations for analyzing LSA
models, and we have demonstrated how these visualizations can
lead to better use of LSA for the problem of document clustering.
However, there remain many related open questions, including how
well the approach here generalizes to the other variants of LSA,
how to identify and visualize sets of LSA model parameters leading
to sets of equivalent graphs, and how best to assess performance of
visual model exploration systems such as LSAView.
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